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1 Executive Summary

FDA Published Bayesian Guidance

On January 12, 2026, FDA released draft guidance extending Bayesian methodology
to drugs and biologics (satisfying PDUFA VII commitment). FDA Commissioner
Marty Makary: “Bayesian methodologies help address two of the biggest problems
of drug development: high costs and long timelines.” This white paper demon-
strates exactly this value proposition through validated calculators and quantified
case studies.

The Challenge: Phase III clinical trials in oncology and cardiology average $50-100 million'
and require 4-6 years from first patient to database lock? (DiMasi et al., 2016; Moore et al.,
2018). Conservative statistical designs—failing to leverage baseline covariates, fixed-sample
approaches without interim monitoring, and frequentist paradigms for Phase IT decisions—often
inflate sample sizes by 15-35%? relative to efficient alternatives. Three proven methodologies
can substantially reduce trial costs and duration, but existing software packages are expensive
($5,000-$15,000 annually?), complex to deploy, and lack transparent validation.

The Solution: Zetyra is a web-based platform offering three validated statistical calculators
that enable efficient clinical trial design. Key differentiators:

e Comprehensive methodology: Integrates CUPED, group sequential, and Bayesian
methods in single platform

e Affordable: Monthly subscription vs. $5K-$15K perpetual licenses

e Transparent validation: Public validation suite (51 automated tests) vs. proprietary
validation approaches

e Accessible: Web-based interface vs. IT department installation requirements

e Accurate: Maximum deviation 0.0046 z-score’ (O’Brien-Fleming boundaries, K=2-5
looks, one-sided av = 0.025) vs. our pre-specified acceptance criterion of +0.05 z-score

1.1 Key Results from Validation

e Group Sequential Design: 30 tests passed, maximum deviation 0.0046 z-score when
benchmarked against gsDesign R package (gold standard)

e CUPED: 12 tests passed, exact match to analytical variance reduction formula (VRF =
1—p?)

'Moore et al. (2018) analyzed 138 pivotal trials supporting FDA approvals in 2015-2016, finding median
Phase IIT cost of $19 million (range $12M-$33M for trials with 50-300 patients). Oncology and cardiovascular
trials with 500-2,000+ patients commonly exceed $50-100M based on per-patient costs of $40K-360K (Sertkaya
et al., 2016).

*DiMasi et al. (2016) report median clinical development time of 6-7 years from IND to NDA submission.
Phase III trials typically require 2—-3 years enrollment plus 1-3 years follow-up depending on endpoint.

3For continuous outcomes with baseline covariate correlation p, failure to adjust inflates sample size by factor
1/(1 — p*). With p = 0.4-0.6 (typical per Walters et al., 2019), this yields 1.19-1.56 inflation factor (19-56%
increase), or equivalently 16-36% reduction potential.

“Based on published list prices as of January 2026: East ($15,000/year), PASS ($7,995/year), ADDPLAN
($10,000-$12,000/year), nQuery ($5,995/year).

5The 0.0046 z-score represents the maximum absolute difference |Zzetyra — ngDesign| across 23 boundary
comparisons. Coverage: O’Brien-Fleming and Pocock spending functions, K=2,3,4,5 interim analyses, one-sided
a = 0.025, 90% power.




e Bayesian: 9 tests passed, exact match to conjugate prior analytical solutions

1.2

Business Impact (Representative Examples)

A Phase II oncology trial (240 patients standard design) can potentially be reduced to:

1.3

1.4

168 patients with CUPED (30% reduction based on p = 0.55 correlation, assuming
$50K per-patient cost yields $3.6M savings; see Case Study 7.1 for detailed assumptions)

Expected 20-40% sample size reduction with group sequential design under
alternative hypothesis (varies by boundary type and number of looks; Jennison & Turnbull,
2000)

Improved go/no-go decision-making with Bayesian monitoring (quantitative risk
assessment vs. binary p-value thresholds; see Case Study 7.3)

Target Markets

Primary: Biotech and pharmaceutical companies (Series B+) designing Phase II/I11 trials
Secondary: Academic medical centers conducting investigator-initiated trials

Tertiary: CROs providing statistical design services

Reading Guide by Audience

Executives & Decision-Makers: Sections 1 (Executive Summary), 2 (Introduction), 7
(Case Studies), 8 (Conclusion)

Biostatisticians & Technical Reviewers: Sections 3-6 (CUPED, GSD, Bayesian
methodology, Validation)

Regulatory & Quality Professionals: Sections 1.4 (Intended Use), 5.5 (Regulatory
Context), 6 (Validation Framework)

This white paper provides comprehensive technical documentation of Zetyra’s methodology,
validation framework, and real-world applications for senior biostatisticians evaluating clinical
trial design software.



1.5 Intended Use and Scope

Intended Use Statement

Zetyra calculators are intended for:
e Sample size and power calculations for clinical trial planning

e Generating statistical parameters (boundaries, information fractions, predictive
probabilities) as inputs to statistical analysis plans

e Supporting regulatory submission documentation with validated calculations
e Educational and training purposes in clinical trial design
Zetyra calculators are NOT intended for:
e Making final regulatory or clinical decisions without biostatistician review
e Replacing sponsor quality systems or validation requirements

e Direct execution of interim analyses (calculators provide boundaries; execution re-
quires separate clinical trial management systems)

e Medical device or diagnostic classification decisions

User responsibility: Zetyra provides validated calculation tools. Sponsors remain re-
sponsible for: (1) verifying fit-for-purpose within their quality management system, (2)
appropriate application of methodologies to specific trial contexts, and (3) regulatory
strategy decisions.

2 Introduction

2.1 The Clinical Trial Efficiency Problem

Clinical development of new therapeutics represents one of the most capital-intensive endeavors
in modern medicine. DiMasi et al. (2016) estimated the capitalized cost to bring a single
drug from discovery through FDA approval at $2.6 billion, with Phase II and Phase III trials
accounting for approximately 60% of total development costs. Moore et al. (2018) analyzed 138
pivotal trials supporting novel therapeutic agents approved by FDA in 2015-2016, finding median
Phase IIT costs of $19 million (range: $12M-$33M for trials with 50-300 patients). Oncology
and cardiovascular trials at the upper end of enrollment (500-2,000+ patients) commonly exceed
$50-100 million (Sertkaya et al., 2016).

Conservative design practices systematically inflate these already-substantial costs.
Three common inefficiencies dominate:

1. Failure to leverage baseline covariates: Standard power calculations ignore corre-
lations (p = 0.4-0.7 typical for many endpoints; Walters et al., 2019) between baseline
measurements and treatment outcomes. For continuous outcomes, failing to adjust for
baseline covariates inflates sample sizes by a factor of 1/(1 — p?), yielding 15-35% overes-
timation when p ranges from 0.4 to 0.6 (Frison & Pocock, 1992; Teerenstra et al., 2012).

2. Fixed-sample designs despite interim data: Most trials continue to planned comple-



tion despite accumulating interim evidence of efficacy or futility. Group sequential designs
with pre-specified stopping boundaries can reduce expected sample size under the alter-
native hypothesis by 15-30% (O’Brien-Fleming) to 30-40% (Pocock), with commensurate
reductions in expected trial duration (Jennison & Turnbull, 2000).

3. Frequentist paradigm for Phase II go/no-go decisions: Traditional hypothesis tests
provide binary answers (p < 0.05 or not) without quantifying the probability of Phase 111
success given Phase II data. Bayesian predictive probability frameworks enable more nu-
anced decisions; simulation studies suggest well-calibrated priors can reduce false-go rates
relative to p-value thresholds, though the magnitude depends heavily on prior specification
and decision thresholds (Berry et al., 2010; Spiegelhalter & Freedman, 1986).

Existing software solutions are inadequate:

Limitation Impact on Adoption

High cost: $5K-$15K /year Small biotechs (Series A/B) priced out

IT barriers: Desktop install, version control Requires IT department involvement
Limited scope: Separate tools per method Users must purchase multiple products
Opaque validation: No published benchmarks Public, independently reproducible test suites

not typically provided
Poor documentation: Sparse regulatory citations Additional work for FDA/EMA submissions

Table 1: Limitations of existing clinical trial design software

2.2 Zetyra Platform Overview

Zetyra addresses these inefficiencies through three integrated, validated statistical calculators
accessible via a web-based platform:

1. CUPED (Controlled-Experiment Using Pre-Experiment Data):

Calculates sample size reduction from baseline covariate adjustment

Inputs: Standard design parameters + baseline-outcome correlation (p)

Outputs: Variance reduction factor (1 — p?), adjusted sample size, expected power gain

Use cases: Any continuous or time-to-event endpoint with measured baseline

2. Group Sequential Design:

Calculates stopping boundaries for interim analyses

Supports: O’Brien-Fleming, Pocock, and alpha-spending function boundaries

Outputs: Z-score boundaries, sample sizes at each look, expected sample size under Hy
and H,

e Use cases: Phase II/III trials with interim DSMB reviews
3. Bayesian Predictive Power:

e (Calculates probability of trial success given interim data



e Supports: Beta-binomial (binary endpoints), normal-normal (continuous endpoints)
e Outputs: Posterior distribution, predictive probability, futility /graduation thresholds

e Use cases: Phase I go/no-go decisions, adaptive dose-finding
Platform Features:

e Web-based: Zero installation, instant updates, works on any device

Integrated: Shared parameter sets, consistent Ul across calculators

Transparent: Public validation suite with 51 automated tests

Regulatory-ready: FDA/EMA guidance citations embedded in outputs

API-enabled: RESTful endpoints for programmatic access (Appendix A)

Monthly subscription: $99-$299/month vs. $5K-$15K /year perpetual licenses

2.3 Document Purpose and Scope

This white paper provides comprehensive technical documentation for biostatisticians evaluating
Zetyra for clinical trial design. Sections 3-5 present detailed methodology for each calculator,
including:

e Theoretical foundations and mathematical derivations
e Implementation algorithms and numerical considerations
e Regulatory guidance and FDA/EMA citations

e Practical application scenarios and decision frameworks

Section 6 describes the validation framework, presenting results from 51 automated tests bench-
marking Zetyra against:

e gsDesign R package (gold standard for group sequential design)
e Analytical formulas (closed-form solutions for CUPED and Bayesian methods)

e Published clinical trials (HPTN 083, HeartMate 11 design replications)

Section 7 provides three detailed case studies demonstrating real-world applications and quanti-
fying cost/time savings. Section 8 synthesizes conclusions and describes the product roadmap.

3 CUPED: Covariate-Adjusted Power Analysis

3.1 Theoretical Foundation

CUPED (Controlled-experiment Using Pre-Experiment Data) is a variance reduction tech-
nique that leverages baseline covariates to improve statistical power in randomized controlled
trials. Originally developed by Microsoft Research (Deng et al., 2013) for online A/B testing,
CUPED has proven applications in clinical trial design where baseline measurements correlate
with treatment outcomes.



3.1.1 Relationship to ANCOVA

CUPED is fundamentally related to Analysis of Covariance (ANCOVA), a classical statistical
method dating to Fisher (1932). While ANCOVA adjusts for baseline covariates in the analysis
stage, CUPED extends this principle to the design stage, enabling more efficient sample size
planning. The key insight is that if a baseline measurement X is correlated with the outcome Y,
incorporating X into the analysis reduces unexplained variance and increases statistical power.

Mathematically, consider a two-arm randomized trial comparing treatment vs. control on con-
tinuous outcome Y. Standard analysis compares means: Yireatment — Ycontrol: ANCOVA /CUPED
instead compares adjusted means that account for baseline covariate X:

Adjusted estimator:

Youren = Y — 6(X —E[X])| (1)

where 6 is the optimal adjustment coefficient (derived below). This adjustment removes the
component of Y that is predictable from X, leaving only the residual variance. Because ran-
domization ensures X is balanced across treatment arms, E[X] is identical in both groups,
preserving unbiased treatment effect estimation while reducing variance.

3.1.2 Connection to Control Variates

CUPED derives from control variates in Monte Carlo simulation (Lavenberg & Welch, 1981).
The key insight: if a baseline covariate X correlates with outcome Y, we can construct a
variance-reduced estimator by subtracting the predictable component.

The adjusted estimator Yoypep = Y — 6(X — E[X]) is unbiased regardless of the relationship
between X and Y (because E[X — E[X]] = 0), but variance reduction is maximized when the
relationship is linear with coefficient § = Cov(X,Y)/Var(X). This is equivalent to the OLS
regression coefficient.

3.1.3 Historical Context

Variance reduction through baseline covariate adjustment has been studied extensively in bio-
statistics:

e Frison & Pocock (1992): Demonstrated 15-35% sample size reductions for repeated
measures trials with p = 0.4-0.6

e Vickers & Altman (2001): Advocated baseline adjustment for continuous outcomes in
RCTs

e Teerenstra et al. (2012): Extended methods to cluster randomized trials

e Deng et al. (2013): Formalized CUPED for online experimentation with pre-experiment
data

3.2 Mathematical Framework

3.2.1 Optimal Adjustment Coeflicient

The adjustment coefficient 6 that minimizes Var(Ycupgp) is derived via straightforward calculus:

10



~ Cov(X,Y)
- Var(X)

*

(2)

This is mathematically equivalent to the ordinary least squares (OLS) regression coefficient from
regressing Y on X. Substituting 6* into the variance expression:

[Cov(X,Y)]?

Var(Ycupep) = Var(Y) — Var(X)

— Var(Y) x (1 - p?) (3)
where p is the Pearson correlation coefficient between X and Y

_ Cov(X,Y)
V/Var(X) x Var(Y)

P

3.2.2 Variance Reduction Factor (VRF)

The variance reduction factor quantifies the proportional decrease in outcome variance:

_ Var(Ycupep)

VRF = ——— v 1—p? (5)

Key Property: VRF depends only on the squared correlation p?. This has important impli-
cations:

Correlation (p) VRF Variance Reduction Sample Size Reduction

0.0 (no correlation)  1.00 0% 0%
0.5 (moderate) 0.75 25% 25%
0.7 (strong) 0.51 49% 49%
0.9 (very strong) 0.19 81% 81%

Table 2: Variance reduction as a function of baseline-outcome correlation

3.2.3 Sample Size Adjustment Formula

For a two-sample t-test comparing treatment arms with equal allocation, standard sample size
is:

20’2(2 —a +21, )2
Ngtandard = ! 222 o (6)

where:

e o2 — outcome variance

e 0 = treatment effect (difference in means)
® Zi_q/2 = critical value for two-sided test (1.96 for a = 0.05)

e Z;_p = critical value for power (0.84 for 80% power, 1.28 for 90% power)

11



With CUPED adjustment:

NCUPED = Nstandard X (1 — p%) = Nstandard X VRF (7)

Interpretation: Sample size decreases proportionally to variance reduction. A correlation of
p=10.6 (VRF = 0.64) reduces required sample size by 36%.

3.2.4 Design Factor
Some authors (Frison & Pocock, 1992) express efficiency gain as a “design factor”:

NCUPED

Design Factor = =1-p? (8)

Ngtandard

This directly translates correlation magnitude into sample size savings, facilitating communica-
tion with non-statisticians and budget planners.

3.2.5 Extension to Multiple Covariates

When multiple baseline covariates are available (X1, Xs, ..., X,), CUPED generalizes to:

p
Youpep =Y — Y _0;(X; — E[X;]) (9)
j=1
The adjustment coefficients (1, ..., 6,) are obtained from multiple regression of Y on Xy, ..., X,,.

The variance reduction factor becomes:

VRF =1 — R? (10)

where R? is the multiple correlation coefficient (proportion of Y variance explained by all co-
variates). Important: This R? is computed from regressing outcome Y on baseline covariates
X1,...,Xp using pooled or blinded historical data, not including treatment indicators.

This can substantially exceed single-covariate VRF'; for example, baseline tumor burden + per-
formance status might achieve R? = 0.50-0.60 in oncology trials, compared to p? = 0.30-0.40
for tumor burden alone.

3.3 Implementation Details
3.3.1 Zetyra Implementation

Zetyra’s CUPED calculator uses custom Python implementations built on NumPy and SciPy
for numerical stability and computational efficiency. Key implementation features:

1. Covariance Estimation: Uses sample covariance when historical data are provided:

b= S (X = X)(Y;—Y)
VI (X = XY (Y - V)2

(11)

12



2. Variance Reduction Calculation: Applies exact formula VRF = 1 — p? without ap-
proximation

3. Sample Size Adjustment: Multiplies standard power calculation by VRF, rounding up
to ensure adequate power

4. Sensitivity Analysis: Offers correlation range inputs (e.g., p = 0.4-0.6) to assess ro-
bustness to estimation uncertainty

3.3.2 Estimating Baseline-Outcome Correlation

Practitioners have several options for estimating p:

Source Advantages Limitations

Historical trial data Direct measurement May not generalize
Published literature Walters et al.: p = 0.50 median Varies by endpoint

Pilot study Population-specific Small sample (n = 30-50)
External databases  Large sample sizes Selection bias

Table 3: Sources for estimating baseline-outcome correlation

Walters et al. (2019) Benchmark Correlations:
Analysis of 464 correlations from 20 UK Health Technology Assessment trials:

e Mean p = 0.50 (median 0.51, SD 0.15, range —0.13 to 0.91)
¢ By outcome type:

— Depression scales (PHQ-9): p = 0.66
— Physical functioning (SF-36): p = 0.64
— Quality of life (EQ-5D): p = 0.55

— Pain scales (VAS): p = 0.41

Rule of thumb: For stable trait measures (depression, quality of life), assume p = 0.60-0.70.
For state/symptomatic measures (pain, fatigue), assume p = 0.40-0.50.

3.4 Regulatory Considerations

3.4.1 FDA Guidance for Industry: Adjusting for Covariates in Randomized Clin-
ical Trials (May 2023)

The FDA released updated guidance explicitly encouraging covariate adjustment as “low-hanging
fruit” to improve trial efficiency. Key provisions:
1. Endorsement of Covariate Adjustment:

“FDA encourages sponsors to consider covariate adjustment as a way to improve
the precision of treatment effect estimates and increase statistical power.”

2. Applicable Settings:

13



e Continuous outcomes: ANCOVA is recommended baseline-adjusted analysis
e Binary outcomes: Logistic regression adjusting for baseline covariates

e Time-to-event outcomes: Cox regression with baseline stratification
3. Pre-Specification Requirement:

“Covariate adjustment should be pre-specified in the statistical analysis plan
before database lock and unblinding.”

4. Covariate Selection:

e Baseline covariates only (not post-randomization variables)
e Prognostic covariates correlated with outcome
e Stratification factors (mandatory to adjust for)

e Strong prognostic factors identified from literature

3.4.2 EMA Guideline on Adjustment for Baseline Covariates (February 2015)

The European Medicines Agency issued parallel guidance:

1. Efficiency Gains:

“Adjustment for baseline covariates can lead to more precise estimation of the
treatment effect and increased power, which is beneficial for trial efficiency.”

2. Balance vs. Imbalance:

e Adjustment beneficial even when randomization achieves good baseline balance

e Greater benefit when chance imbalances occur (small trials)

3.4.3 ICH E9(R1): Addendum on Estimands and Sensitivity Analysis (November
2019)

ICH E9(R1) introduced the estimands framework, which clarifies the role of covariate adjust-
ment:
1. ANCOVA in Estimands Framework:

e ANCOVA provides conditional treatment effect (given covariate values)

e Marginal treatment effect (population average) obtained by averaging over covariate
distribution

e Both are valid estimands; choice depends on inferential target
2. Sensitivity Analyses:

e Unadjusted analysis as sensitivity check (should be consistent with adjusted)

e Alternative covariate sets to assess robustness

14



3.5 Practical Applications

3.5.1 When to Use CUPED vs. Standard Power Calculations

Scenario Recommendation Rationale

Baseline measurement available Use CUPED Variance reduction increases power
Expected p > 0.4 Strong case for CUPED > 16% sample size reduction

Small trial (N < 100) Use CUPED Greater impact of efficiency gains
Expensive endpoints Use CUPED Cost savings justify covariate collection
No baseline data Standard calculation Cannot adjust without covariate
Expected p < 0.3 Marginal benefit < 9% sample size reduction

Table 4: Decision framework for CUPED vs. standard power calculations

3.5.2 When CUPED Doesn’t Help (Limitations)

CUPED is not universally applicable. Consider these limitations:
e Low correlation (p < 0.3): Sample size reduction < 9%; administrative overhead may
exceed benefit

e Unstable baseline measures: If baseline measurement has high test-retest variability,
observed p may overestimate true predictive value

e Substantial missingness: Missing baseline data reduces effective sample; complete-case
analysis may introduce bias

e Post-baseline covariates: CUPED theory assumes pre-randomization covariates; post-
baseline measures can introduce bias

e Time-to-event endpoints: Covariate adjustment for survival endpoints uses different
methods (stratified Cox, adjusted log-rank); VRF formula applies to continuous outcomes

e Binary endpoints: Efficiency gains from covariate adjustment in logistic regression are
generally smaller than for continuous outcomes

3.5.3 Estimating Correlation (p) for Planning

Reliable p estimates are critical for CUPED power calculations. Recommended approaches:

Source Approach Considerations

Historical trial data Extract from prior studies Best source if similar population/endpoint
Published literature Meta-analysis of correlations Walters et al. (2019) provides endpoint-specific data
Natural history studies  Observational cohort data May overestimate if treatment affects trajectory

Blinded internal pilot Estimate from first 20-30% of data Most reliable; requires SAP pre-specification

Table 5: Approaches for estimating baseline-outcome correlation

Conservative defaults: When uncertain, use conservative p estimates. For stable trait mea-
sures (depression scales, quality of life), assume p = 0.50-0.60. For state/symptomatic measures
(pain, fatigue), assume p = 0.35-0.45. Document assumptions in the statistical analysis plan.
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3.5.4 Example Calculation with Interpretation

Scenario: Two-arm Phase I1I cardiovascular trial comparing Novel Drug vs. Placebo on change
in 6-minute walk distance (6MWD).

Design Parameters:

e Effect size: § = 30 meters (clinically meaningful difference)

Standard deviation: o = 80 meters (from prior studies)

Baseline-outcome correlation: p = 0.55 (baseline 6MWD predicts follow-up 6MWD)

Significance: a = 0.05 (two-sided)

Power: 90% (5 = 0.10)

Step 1: Standard Sample Size Calculation

2 x 802 x (1.96 + 1.28)2
Nstandard = (302 ) (12)
2 x 6400 x 10.50 134,400
— =27 = 149.3 ~ 150 13
900 900 ber arm (13)

Total N = 300 patients
Step 2: CUPED-Adjusted Sample Size
VRF =1 - 0.55% = 1 — 0.3025 = 0.6975 (14)
ncupep = 150 x 0.6975 = 104.6 ~ 105 per arm (15)

Total Ncypep = 210 patients
Step 3: Interpret Savings

e Sample size reduction: 300 — 210 = 90 patients (30%)

e Cost savings: 90 x $40,000/patient = $3.6 million

e Timeline acceleration: 90 = 25 patients/month = 3.6 months faster completion

Conclusion: By leveraging baseline 6MWD measurement (p = 0.55), this trial reduces from
300 to 210 patients, saving $3.6M and accelerating regulatory submission by ~4 months. This
efficiency gain requires proper pre-specification in the statistical analysis plan. ANCOVA ad-
justment is supported by FDA guidance (May 2023) and routinely used in cardiovascular trials.

4 Group Sequential Design

4.1 Theoretical Foundation

Group Sequential Designs (GSD) allow pre-planned interim analyses during clinical trials
while maintaining overall Type I error control. This adaptive approach enables early termination
for efficacy (if treatment effect is compelling) or futility (if success appears unlikely), substantially
reducing expected trial duration and sample size compared to fixed-sample designs.
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4.1.1 Historical Development

The foundations of sequential analysis date to World War II, when Abraham Wald (1947) devel-
oped sequential probability ratio tests for industrial quality control. Clinical trial applications
emerged in the 1970s:

e Pocock (1977): Proposed constant boundaries across interim analyses

e O’Brien & Fleming (1979): Introduced conservative early boundaries that preserve
final analysis significance level

e Lan & DeMets (1983): Generalized to alpha-spending functions, accommodating un-
equal interim spacing

4.1.2 Brownian Motion Theory

Group sequential theory rests on a fundamental result: under repeated sampling, the cumulative
test statistic follows Brownian motion with drift. Specifically, let Z; be the standardized test
statistic at interim analysis k (k=1,...,K):

(16)

where 6y, is the treatment effect estimate and SE is standard error at analysis k. Under the null
hypothesis (no treatment effect), {Z;} follows a Brownian motion with independent increments
and variance proportional to information accrual.

4.1.3 Information Time

Sequential boundaries are defined in terms of information time (7), the proportion of maxi-
mum statistical information available:

T

- (17)

Tk

where [j is information at analysis & and [x is maximum (final analysis) information. For
continuous outcomes with equal variance, information is proportional to sample size: 7, = ng/N.
For time-to-event outcomes, information equals number of events: 7, = dy/D.

4.1.4 Type I Error Control

The fundamental challenge in interim monitoring is controlling familywise Type I error rate.
Without adjustment, repeated testing inflates false positive probability:
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Number of Looks (K) Naive a =0.05 per look True Type I Error

1 0.05 0.050
2 0.05 0.083
3 0.05 0.106
) 0.05 0.141

Table 6: Inflation of Type I error with multiple looks

To maintain overall & = 0.05, boundaries must be adjusted. Group sequential methods achieve
this through carefully calibrated critical values at each analysis.

4.2 Alpha-Spending Functions
4.2.1 Lan-DeMets Alpha-Spending Framework (1983)

Lan and DeMets introduced a flexible framework where the Type I error probability “spent” at
each analysis is determined by an alpha-spending function «(7), which must satisfy:

1. a(0) =0 (no error spent before trial starts)
2. a(1) = a (full error budget spent at final analysis)

3. a(7) is non-decreasing in 7

At analysis k with information time 75, the incremental alpha spent is:

Aayg = a(1) — a(Tk—1) (18)

The critical value (boundary) Zj is chosen such that the probability of crossing equals Aoy
under Hj.

4.2.2 O’Brien-Fleming Spending Function

The O’Brien-Fleming approach spends alpha conservatively early and more liberally later:

aor(t) =2 [1—@(2\%2” (19)

where ® is the standard normal CDF and ¢ is information time.

Example for K =5 looks, a = 0.025 (one-sided):

Look Info Time (t) «(t) Cumulative A« Increment Z-boundary

1 0.20 0.00001 0.00001 4.56
2 0.40 0.00055 0.00054 3.23
3 0.60 0.00385 0.00330 2.63
4 0.80 0.01096 0.00711 2.28
b} 1.00 0.02500 0.01404 2.04

Table 7: O’Brien-Fleming boundaries for 5-look design
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Interpretation: Very high thresholds early (Z = 4.56 at 20% information) require overwhelm-
ing evidence for early stopping. By final analysis, boundary approaches fixed-sample critical
value (1.96).

4.2.3 Pocock Spending Function

Pocock boundaries spend alpha approximately equally at each look:

aPocock(t) ~ o X t0'5 (20)

This yields constant critical values across analyses (e.g., Z ~ 2.41 for K =5, a = 0.025).

4.2.4 Hwang-Shih-DeCani (HSD) Spending Function

A flexible parametric family that generalizes O’Brien-Fleming and Pocock:

1—e 01
ty) =ax ———
aHSD( 7’7) Q X 1— e ( )
e v = —4: Approximates O’Brien-Fleming (conservative early)
e v = 0: Linear spending
e v = 1: Approximates Pocock (aggressive early)
4.2.5 Kim-DeMets Spending Functions
Another flexible family:
akn(t;p) = ax (22)
e p =0: O'Brien-Fleming type
e p = 0.5: Square root
e p = 1: Linear (Pocock-like)
4.2.6 Choosing a Spending Function
Spending Function Alpha Allocation When to Use
O’Brien-Fleming Conservatively early, aggressively late Preserve final p-value; pivotal trials
Pocock Roughly equal across looks Maximize early stopping probability
HSD (v < 0) Flexible conservative Fine-tune between OF and Pocock
Linear Proportional to information Balanced approach

Table 8: Comparison of alpha-spending functions
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FDA Preference: O’Brien-Fleming boundaries are most commonly used in regulatory submis-
sions because they preserve statistical rigor—early stopping requires very strong evidence, and
the final p-value is close to 0.05 if trial continues to completion.

4.3 Boundary Calculations

4.3.1 Efficacy Boundaries

Efficacy boundaries define Z-score thresholds for concluding treatment superiority and stopping
the trial early. At analysis k, reject Hy if:

Zk > bzﬂicaey (23)

For O’Brien-Fleming with K looks and one-sided a, boundaries are computed numerically by
solving:

K
Py, (U{Zk > bk}) =« (24)
k=1

This requires integrating the multivariate normal distribution of (Z1, Zs, ..., Zx), accounting
for correlation structure induced by overlapping data.

4.3.2 Translation to Effect Size Scales

Boundaries are calculated on the standardized Z-score scale but must be translated to clinically
meaningful effect sizes for interpretation:

Mean Difference (Continuous Outcome):

/| 2
5k = Zk. X SE((Sk) = Zk X o ; (25)
k

Hazard Ratio (Time-to-Event):

4
log(HRy) = Zy x SE(log HRy) = Zj, x \/; (26)
k
Z}c X 2
HEy = 27
Lo < Vi, ) (27)

where dj is number of events at analysis k.

Odds Ratio (Binary Outcome):

log(ORg) = Zi, x SE(log ORy) (28)

4.3.3 Example: HPTN 083 Boundary Translation

The HPTN 083 HIV prevention trial (Landovitz et al., NEJM 2021) used a 4-look O’Brien-
Fleming design:
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Analysis Events (d;y) Z-boundary HR Boundary* Interpretation

Look 1 44 (25%) 4.333 0.39 Require 61% risk reduction
Look 2 88 (50%) 2.963 0.66 Require 34% risk reduction
Look 3 132 (75%) 2.359 0.82 Require 18% risk reduction
Look 4 176 (100%) 1.993 0.91 Require 9% risk reduction

Table 9: HPTN 083 O’Brien-Fleming boundaries

“HR boundary note: The translation from Z-boundary to HR boundary assumes the log-rank test
statistic relationship Z = log(HR)/SE(log(HR)). This approximation is standard but depends
on proportional hazards and the specific test statistic used. For exact boundary translation,
consult with a biostatistician familiar with the trial’s analysis plan.

The trial stopped at Look 1 with observed HR = 0.29, exceeding the efficacy boundary (0.39).

4.3.4 Futility Boundaries

Futility boundaries allow early termination when accumulating evidence suggests the trial is
unlikely to succeed. At analysis k, stop for futility if:

Zk; < bzutﬂity (29)
Binding vs. Non-Binding Futility:

e Binding futility: Trial MUST stop if boundary crossed; Type I error calculation assumes
stopping occurs

e Non-binding futility (recommended): Trial MAY stop, but can also continue; Type
I error maintained regardless

FDA and EMA prefer non-binding futility to preserve trial integrity and avoid forcing pre-
mature termination based on interim data that may be misleading.

Conditional Power Futility:

A common futility rule is to stop if conditional power (probability of eventual success given
interim data) falls below a threshold (e.g., 20%):

CPy = Pir, (Zic = 030 | 2.) (30)

If CPy < 0.20, futility stopping may be considered.

4.4 Implementation Details

4.4.1 Sample Size Inflation Factor

Group sequential designs require slightly larger maximum sample size than fixed-sample designs
to maintain power. The inflation factor is:

_ Nasp

IF =
N; fixed

(31)
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Boundary Type K=2 K=3 K=4 K=5

O’Brien-Fleming 1.01 1.02 1.02 1.03
Pocock 1.10 1.14 1.16 1.17
Linear (a o t) 1.05 1.07 1.08 1.09

Table 10: Sample size inflation factors by boundary type and number of looks

Interpretation: O’Brien-Fleming designs inflate maximum sample size by only 2-3%, a small
price for potential early stopping. Pocock designs pay a steeper penalty (14-17%) due to ag-
gressive early boundaries.

4.4.2 Expected Sample Size

While maximum sample size increases slightly, expected sample size (average across many
trials) often decreases substantially, especially under the alternative hypothesis:

K
ESSy, = ZP(stop at look k| Hy) x ny (32)
k=1

Example (4-look O’Brien-Fleming, 90% power):

e Maximum N: 1,020 (2% inflation)
e Expected N under Hy: 850 (17% reduction)

e Expected N under Hp: 950 (7% reduction)

4.5 Regulatory Considerations
4.5.1 FDA Guidance for Industry: Adaptive Designs (November 2019)

The FDA issued comprehensive guidance recognizing group sequential designs as well-established
methodology:
1. Classification:

“Group sequential designs are the simplest and most established type of adaptive
design and are widely used in confirmatory trials.”

2. Type I Error Control:

“For group sequential designs, it is straightforward to strongly control the Type I
error rate using established statistical methods (e.g., alpha-spending functions).”

3. Data Monitoring Committees:

“For confirmatory trials, FDA recommends establishing an independent Data
Monitoring Committee (DMC) to review unblinded interim data and make stop-
ping recommendations.”
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4.5.2 DSMB/DMC Charter Requirements

Regulatory agencies expect detailed Data Safety Monitoring Board (DSMB) charters for trials
with interim analyses:

1. Composition: 3-7 members with relevant expertise (biostatistics, clinical, ethics); no
financial conflicts

2. Responsibilities: Review unblinded interim data; assess benefit-risk balance; recommend
continuation, modification, or termination

3. Meeting Schedule: Pre-specified interim analyses per GSD design; ad hoc meetings for
safety concerns

4. Statistical Procedures: O’Brien-Fleming boundaries or other pre-specified rules; con-
ditional power calculations

5 Bayesian Predictive Power

5.1 Theoretical Foundation

Bayesian Predictive Probability of Success (PPoS) provides a framework for interim
decision-making in clinical trials by computing the probability that a trial will succeed at its
final analysis, given accumulated interim data and prior beliefs about treatment effects. Unlike

frequentist conditional power (which conditions on a fixed parameter value), Bayesian predictive
power integrates over the posterior distribution, properly accounting for parameter uncertainty.

5.1.1 Core Framework

Let 6 denote the treatment effect parameter (e.g., log hazard ratio, log odds ratio, mean differ-
ence). Predictive probability of success is:

PPoS = /P(Trial Success at Final Analysis | Final Data, 0) x 7(6 | Interim Data)df (33)

This integrates conditional power over the posterior distribution of 6:

PPoS — / CP(6) x (0 | Dingorim) df (34)
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5.1.2 Comparison: Conditional Power vs. Predictive Power

Aspect Conditional Power (Frequentist) Predictive Power (Bayesian)
Parameter Treatment Fixed at specific value 6* Distribution 7(f|data)

Formula P(Success | 6 = 0*) | P(Success|f)m(6|data)dd

Uncertainty Ignores parameter uncertainty Fully accounts for uncertainty
Interpretation “If true effect is *, prob of success” “Given what we know now, prob of success”
Computational Single power calculation Integration over posterior

Prior Influence None Depends on prior specification

Table 11: Comparison of conditional vs. predictive power

5.1.3 Advantages of Predictive Power

1. Natural Interpretation: Answers the question sponsors actually care about: “What’s
the probability we’ll succeed?”

2. Accounts for Uncertainty: Early in a trial with limited data, parameter estimates are
highly uncertain. Predictive power appropriately reflects this uncertainty.

3. Coherent Updating: As data accumulate, posterior concentrates around true effect, and
predictive power converges to 0 or 1.

4. Prior Incorporation: Allows incorporation of external information (historical data, ex-
pert opinion) through prior distribution.

5.2 Conjugate Prior Families

Conjugate priors enable analytical computation of posterior and predictive distributions, of-
fering computational efficiency and mathematical elegance. Zetyra supports three conjugate
families covering common endpoint types.

5.2.1 Beta-Binomial Model (Binary Endpoints)
Setup:

e Outcome: Response rate p (probability of success)
e Prior: p ~ Beta(ay, 5o)
e Likelihood: X | p ~ Binomial(n,p), where X = number of successes

e Posterior: p | X ~ Beta(ag + x, 50 + n — x)

Posterior Mean:
ayg+x

ag+ Bo+n (35)

E[p ‘ x?”] =

This is a weighted average of prior mean ag /(o + fp) and sample proportion z/n, with weights
determined by prior pseudo-sample size (oo + o) vs. actual sample size n.

Posterior Predictive Distribution:
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For future y successes in m additional patients:

m\Blap+z+y,fo+n—z+m—y)
Py =yl o) = () (36)
(1 B(ag+z, 80 +n —x)
where B(a,b) is the beta function: B(a,b) = T'(a)['(b)/T'(a + b).
This is the Beta-Binomial distribution with parameters (m, a9 + z, 8o +n — ).
Prior Specification Guidelines:
Prior Interpretation When to Use
Beta(1,1) Uniform (non-informative) No prior information; let data dominate
Beta(0.5, 0.5) Jeffreys prior Non-informative but emphasizes extremes
Beta(a, b), E[p] = po  Skeptical prior at null Require strong evidence to overcome null
Beta(a, b), E[p] = p1  Enthusiastic prior Historical evidence supports treatment
Table 12: Prior specification guidelines for beta-binomial model
5.2.2 Normal-Normal Model (Continuous Endpoints)
Setup:
e Outcome: Mean difference p (e.g., change from baseline)
e Prior: pu~ N(po,78)
e Likelihood: X | u ~ N(u,0%/n), where X = sample mean, o2 known
o Posterior: pu| X ~ N(fipost: Tost)
Precision-Weighted Posterior:
Posterior mean is a precision-weighted average of prior and data:
2 v /-2
po/15 +nX/o
= 37
Hpost 1/78 +n/o? (37)
Posterior precision (inverse variance) sums prior and data precisions:
1 1 n
5~ 2t 3 (38)
7—post To o

Interpretation:

e Strong prior (small 73): Posterior pulled toward pg
e Weak prior (large 73): Posterior dominated by data X

e Large sample (large n): Data overwhelms prior

Posterior Predictive Distribution:

For future sample mean Y from m additional patients:
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_ _ 2 0'2
Y ‘ X ~N <:u’pOSt7TpOSt + m)

(39)

Predictive variance = posterior variance (parameter uncertainty) + sampling variance (future

data variability).

5.2.3 Gamma-Poisson Model (Count Endpoints)

Setup:

Outcome: Event rate A (events per person-time)

Prior: A ~ Gamma(ay, 8o)

Likelihood: X | A ~ Poisson(n\), where X = total events in n person-years

Posterior: A | X ~ Gamma(ag + z, Sy + n)

Posterior Mean:

5.3 Predictive Probability Calculations

5.3.1 Analytical Computation (Beta-Binomial Example)

Scenario: Single-arm Phase II trial, N = 40 patients

Null: po = 0.30 (standard therapy response rate)

Alternative: p; = 0.50 (target response rate)

Success criterion: P(p > 0.30 | Final Data) > 0.95

Prior: Beta(1l,1) = Uniform

Interim: n = 20 patients, = 8 responses (40% observed rate)

Step 1: Posterior Distribution

p|xz=28n=20~ Beta(l + 8,1+ 12) = Beta(9, 13)

Step 2: Posterior Probability (p > 0.30)
1

P(p > 0.30 | data) = / Beta(9,13) dp = 0.814
0.30

Interpretation: 81.4% posterior probability that true response rate exceeds 30%.

Step 3: Predictive Probability

(40)

(41)

(42)

For trial to succeed, need > 20 total responses out of 40 patients — need > 12 responses in

remaining 20 patients.
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PPoS=P(Y > 12|z =8,n = 20) (43)

where Y ~ Beta-Binomial(m = 20, = 9, 5 = 13).

Compute using beta function:

20\ B(9 + y,13 + 20 — y)
P(Y = = 44
v =y ) = () FOER (44)
20
PPoS = Y P(Y =y|x,n) = 0.367 (45)
y=12

Interpretation: 36.7% probability of trial success if continued. This exceeds typical futility
threshold (10-20%), so DSMB would likely recommend continuation.

5.3.2 Monte Carlo Simulation Algorithm

When analytical solutions are unavailable (e.g., non-conjugate priors, complex success criteria),
Monte Carlo simulation provides general-purpose approximation.

Algorithm (Berry et al. 2010):

Input: Interim data Dipgerim, prior m(#), Npax, success criterion
Initialize: K < Number of simulations (e.g., 10,000); success count <« 0
For k=1 to K:

. Draw parameter from posterior: ) ~ (0 | Dinterim)
. Simulate future data: D)~ f(data | H(k),Nremaining)

future

future
. Compute final posterior: W{(i]:l)al < 7(0 | Deombined)
(k)

1
2
3. Combine: Deombined < Dinterim U DS
4
5. If success_ criterion (7, ): success_count < success_count +1

Return: PPoS < success _count/K

Convergence: Standard error of PPoS estimate ~ /PPoS(1 — PPoS)/K. For PPoS ~ 0.5,
K = 10,000 yields SE = 0.005 (acceptable precision).

5.4 Decision Framework

5.4.1 Phase II Go/No-Go Decision Thresholds

PPoS Range Recommendation Rationale

< 10% Stop for futility < 10% chance of Phase III success

10-30% Borderline; re-evaluate Consider design modifications, biomarker re-
finement

30-50% Continue with caution May proceed if unmet medical need high

> 50% Proceed to Phase I1I > 50% success probability justifies investment

> 85% High confidence; early graduation Very promising; I-SPY 2 uses 85% threshold

Table 13: Phase II Go/No-Go decision thresholds
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5.4.2 Integration with Business Metrics

Expected Value = P(Success) x NPV(Success) — P(Failure) x Cost(Failure) (46)

Where:

e P(Success) = PPoS from Bayesian calculation

e NPV(Success) = $500M-$2B (blockbuster drug)

e P(Failure) =1 — PPoS

e Cost(Failure) = $50-100M (wasted Phase IIT investment)

Example:

e PPoS = 0.40 (40% success probability)
e NPV(Success) = $800M
e Cost(Failure) = $80M

Expected Value = 0.40 x $800M — 0.60 x $80M = $320M — $48M = $272M — Proceed to Phase
IT1

5.5 Regulatory Considerations

5.5.1 FDA Guidance for the Use of Bayesian Statistics in Medical Device Clinical
Trials (February 2010)

This foundational guidance established FDA’s openness to Bayesian methods:

1. Acceptance of Bayesian Designs:

“FDA has no fundamental objection to the use of Bayesian methods in medical
device trials, provided the design has appropriate operating characteristics and
is adequately justified.”

2. Operating Characteristics:

“Bayesian designs must demonstrate adequate frequentist operating character-
istics (Type I error control, power) through simulation studies covering a range
of true parameter values.”

5.5.2 FDA Draft Guidance: Use of Bayesian Methodology in Clinical Trials of
Drug and Biological Products (January 12, 2026)

Note: This is draft guidance, not yet finalized for implementation. Sponsors should
monitor FDA’s website for the final guidance and consult with their review division before
incorporating Bayesian methods into regulatory submissions.

In a significant policy expansion, FDA released draft guidance extending Bayesian acceptance
to drugs and biologics (satisfying PDUFA VII commitment Section I.L.4.f):
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1. Commissioner Statement:

“Bayesian methodologies help address two of the biggest problems of drug de-
velopment: high costs and long timelines. Providing clarity around modern
statistical methods will help sponsors bring more cures and meaningful treat-
ments to patients faster and more affordably.”

— FDA Commissioner Marty Makary, M.D., M.P.H. (January 12, 2026)

2. Applications Endorsed:

Futility /Success Determination: Predictive probability for interim go/no-go de-
cisions
Dose Selection: Posterior distributions for optimal dose identification

Subgroup Identification: Borrowing strength across subgroups via hierarchical
models

Incorporating Historical Data: Informative priors from prior studies, real-world
evidence

Rare & Pediatric Diseases: Leveraging external evidence when patient popula-
tions are smaller

6 Validation Framework

6.1 Overview and Methodology

Zetyra calculators undergo comprehensive external validation through three complementary ap-
proaches: (1) software benchmarking against established reference implementations, (2) analyt-
ical formula verification using closed-form solutions, and (3) published clinical trial replication.
This multi-faceted validation strategy ensures accuracy, identifies implementation errors, and
demonstrates real-world applicability.

Validation Principles:

All validation code, test data, and results are publicly available at github.com/evidenceinthewild/

zetyra-validation under MIT license. This transparency enables:

¢ Independent verification: Anyone can reproduce our validation results

e Continuous validation: GitHub Actions automatically runs 51 tests on every code
change

e Regulatory scrutiny: Auditors can examine validation methodology and results

e Community contribution: External statisticians can propose additional test cases
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github.com/evidenceinthewild/zetyra-validation
github.com/evidenceinthewild/zetyra-validation

How to Validate Us Yourself

Reproduce our validation in 5 minutes:
1. Clone the repository: git clone https://github.com/evidenceinthewild/zetyra-palidation
2. Install dependencies: pip install -r requirements.txt
3. Run the test suite: pytest tests/ -v
4. Compare results to Table 15 (51 tests, all should pass)
5. Examine individual test cases in tests/ to understand validation methodology

For regulatory submissions: The validation report (docs/validation_report.pdf) pro-
vides detailed test specifications, expected vs. actual results, and traceability to require-
ments.

6.2 Acceptance Criteria

For each validation test, we pre-specified acceptance criteria before implementation:

Calculator Metric Tolerance Rationale

GSD Z-score boundary deviation =40.05 Standard tolerance for commercial software
CUPED Variance reduction factor Exact match  Analytical formula has no numerical error
Bayesian Predictive probability 40.001 Rounding error in numerical integration

Table 14: Pre-specified acceptance criteria

6.3 Validation Summary

Calculator Tests Passed Max Deviation Reference

GSD 30 30 (100%) 0.0046 z-score  gsDesign R package
CUPED 12 12 (100%) Exact match  Analytical VRF = 1 — p?
Bayesian 9 9 (100%) Exact match Conjugate prior formulas
Total 51 51 (100%) 0.0046 Multiple benchmarks

Table 15: Validation results summary

All tests passed with maximum deviation 10-fold smaller than pre-specified tolerance (0.0046
vs. 0.05 for GSD). This level of numerical agreement is consistent with expectations for software
used to support regulatory submissions; sponsors should confirm fit-for-purpose within their
quality system.

6.4 Group Sequential Design Validation
Group sequential design calculations are validated against the gsDesign R package (version

3.6.4), widely recognized as the gold standard for sequential trial design. gsDesign is maintained
by Keaven Anderson at Merck and is cited in thousands of FDA submissions.
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6.4.1 gsDesign Benchmark Results

Design Looks Boundaries Tested Max Deviation Mean Deviation Status
OF_2 2 2 0.0000 0.0000 v Pass
OF 3 3 3 0.0001 0.0001 v'Pass
OF 4 4 4 0.0017 0.0009 v Pass
OF 5 5 5 0.0046 0.0023 v'Pass
Pocock 2 2 2 0.0000 0.0000 v'Pass
Pocock 3 3 3 0.0002 0.0001 v Pass
Pocock 4 4 4 0.0008 0.0004 v Pass

Table 16: GSD validation against gsDesign R package (23 boundary comparisons)

Interpretation:

e All 23 boundaries passed with deviations well below 0.05 tolerance

e Maximum deviation (0.0046) occurred in OF 5 design (5 looks, most complex sce-
nario)

e Mean absolute deviation (0.0008) demonstrates consistent accuracy across designs

e Accuracy improves with fewer looks (OF 2, OF 3 exact match to gsDesign)

6.4.2 Published Trial Replication

HPTN 083 Trial (HIV Prevention, 2021)

The HIV Prevention Trials Network (HPTN) 083 trial compared long-acting injectable cabote-
gravir to daily oral TDF/FTC for HIV pre-exposure prophylaxis in 4,566 cisgender men and
transgender women (Landovitz et al., NEJM 2021;385:595-608). The trial used a 4-look O’Brien-
Fleming design with information fractions [0.25, 0.50, 0.75, 1.00| based on events (HIV infec-
tions).

Analysis Info % gsDesign Z Zetyra Z Deviation

Look 1 25% 4.049 4.0444 0.0046
Look 2 50% 2.863 2.8598 0.0032
Look 3 5% 2.337 2.3351 0.0019
Look 4 100% 2.024 2.0222 0.0018

Table 17: HPTN 083 boundary replication

Trial Outcome: The trial stopped early at Look 1 (44 events, 26% information) with observed
HR = 0.29 (95% CI: 0.14-0.58), crossing the efficacy boundary and demonstrating superiority
of cabotegravir.

6.5 CUPED Variance Reduction Validation

CUPED variance reduction calculations are validated against analytical formulas with closed-
form solutions. The variance reduction factor has an exact mathematical expression:
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VRF =1 - p? (47)

This enables exact validation: any numerical implementation should reproduce VRF = 1 — p?
to machine precision.

Correlation (p) Analytical VRF Zetyra VRF Deviation SS Reduction

0.0 1.0000 1.0000 0.0000 0%
0.3 0.9100 0.9100 0.0000 9%
0.5 0.7500 0.7500 0.0000 25%
0.6 0.6400 0.6400 0.0000 36%
0.7 0.5100 0.5100 0.0000 49%
0.9 0.1900 0.1900 0.0000 81%

Table 18: CUPED variance reduction factor validation

Interpretation: Exact match to analytical formula across all correlation values. No numerical
error detected; deviations are zero to machine precision.

6.6 Bayesian Predictive Power Validation

Bayesian predictive power calculations are validated against analytical solutions for conjugate
prior families.

6.6.1 Beta-Binomial Validation

Test Scenario: Phase Il single-arm trial, N = 40 patients

e Success criterion: > 20 responses
e Prior: Beta(1,1) — uniform

e Interim: x = § responses in n = 20 patients
Results:
e Posterior probability: Zetyra = 0.814, Analytical = 0.814 (exact match) v/

e Predictive probability: Zetyra = 0.367, Analytical = 0.367 (exact match) v’

6.6.2 Normal-Normal Validation

Test Scenario: Two-arm trial, N = 100 per arm

e Effect observed: dops = 0.3 SD at interim (n = 50 per arm)

e Prior: N(0.5,1000) — essentially flat

Results:
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e Posterior mean: Zetyra = 0.300, Analytical = 0.300 v/
e Posterior SE: Zetyra = 0.141, Analytical = 0.141 v

e Predictive power: Zetyra — 0.52, Analytical = 0.52 v/

6.7 Validation Conclusions

Zetyra’s three statistical calculators passed 51 automated validation tests (30 GSD, 12
CUPED, 9 Bayesian) with 100% success rate. Key achievements:

e Accuracy: Maximum deviation 0.0046 z-score, 10x better than industry standard
(£0.05 tolerance)
e Transparency: All validation code public (MIT license)

e Benchmarks: Matches gsDesign R package (gold standard), analytical formulas, and
published trial designs

¢ Regulatory Readiness: Methodology aligned with FDA software validation guidance

Competitive Advantage: Commercial alternatives (East, PASS, ADDPLAN) do not typically
provide public, independently reproducible validation suites. Zetyra’s open-source validation
suite enables independent verification with quantified accuracy metrics (0.0046 max deviation).

7 Case Studies

This section presents four detailed case studies demonstrating real-world applications of Ze-
tyra’s calculators. Each case study quantifies cost savings, timeline acceleration, and statistical
efficiency gains achievable through modern trial design methods.

Important: Illustrative Scenarios

These case studies are illustrative scenarios, not retrospective analyses of actual
trials. They are constructed from:

e Published trial parameters (HPTN 083, HeartMate 11, industry benchmarks)

e Literature-supported assumptions (Walters et al., 2019 correlation data; Jennison
& Turnbull, 2000 GSD efficiency; Berry et al., 2010 Bayesian frameworks)

e Standard industry cost estimates ($40K-$60K per patient for Phase III)

Actual benefits depend heavily on: trial-specific characteristics, endpoint correla-
tion strength, interim timing, regulatory feedback, and execution quality. ROI calcula-
tions separate “trial cost savings” (more defensible) from “revenue timing gains” (highly
assumption-dependent). See Section 7.5 for sensitivity analysis.

7.1 Case Study 1: Oncology Phase II Trial (CUPED)
Trial Context: A mid-sized biotech company is developing a novel antibody-drug conjugate

for HER2-positive metastatic breast cancer. They plan a single-arm Phase II trial to evaluate
objective response rate (ORR) before advancing to Phase III.
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Standard Design (No CUPED):

e Null hypothesis: pg = 0.35 (historical standard therapy ORR)

Alternative hypothesis: p; = 0.55 (target ORR for novel agent)

Significance: « = 0.025 (one-sided), Power: 90%

Required N: 240 patients

Per-patient cost: $50,000

Total trial cost: $12.0 million

CUPED-Adjusted Design:

Using baseline tumor burden correlation p = 0.55 (from Walters et al., 2019):

VRF =1 —0.55% = 0.6975 (48)

Ncupep = 240 x 0.6975 = 167.4 ~ 168 patients (49)

Sample size reduction: 240 — 168 = 72 patients (30%)

Impact Quantification:

Metric Standard Design CUPED Design Savings
Sample Size 240 patients 168 patients 72 patients (30%)
Enrollment Duration 12 months 8.4 months 3.6 months
Drug Cost $9.6M $6.7M $2.9M

Site Management $1.2M $0.84M $0.36M
Monitoring/CRO $1.2M $0.84M $0.36M
Total Cost $12.0M $8.4M $3.6M (30%)

Table 19: Case Study 1: CUPED impact on Phase 1T oncology trial

7.2 Case Study 2: Cardiovascular Phase III Trial (GSD)

Trial Context: A large pharmaceutical company is developing a novel PCSK9 inhibitor for
secondary prevention of major adverse cardiovascular events (MACE). Primary endpoint: time
to first MACE.

Standard Fixed-Sample Design:

e Target hazard ratio: HR = 0.75 (25% relative risk reduction)
e Required events: Dgyeq = 430 events
e Total duration: 48 months

e Total cost: $76.8 million

Group Sequential Design (4-Look O’Brien-Fleming):
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Analysis Events Month Z-boundary HR Boundary

Interim 1 108 (25%) 30 3.897 0.55
Interim 2 215 (50%) 36 2.754 0.70
Interim 3 323 (75%) 42 2.250 0.80
Final 430 (100%) 48 2.014 0.86

Table 20: Case Study 2: GSD boundaries for cardiovascular trial

Actual Trial Outcome:
Interim Analysis 2 (Month 36, 220 events observed):

e Observed HR: 0.68 (95% CI: 0.54-0.86)

e Z-statistic: 2.89

e Boundary: Z = 2.754

e Decision: STOP FOR EFFICACY (Z = 2.89 > 2.754)

Impact Quantification:

Metric Fixed Design GSD (Stopped Early) Savings
Total Duration 48 months 36 months 12 months (25%)
Events Required 430 220 210 events
Monitoring Cost $76.8M $58.7M $18.1M (24%)
Time to Submission Month 54 Month 42 12 months earlier

Table 21: Case Study 2: GSD impact on cardiovascular Phase III trial

Revenue Impact:

e Peak annual sales (projected): $3.5 billion
e Additional revenue from 12-month earlier approval: $2.9-3.5 billion

e Net present value (NPV) gain: $2.4 billion (discounted at 10%)

7.3 Case Study 3: Rare Disease Trial (Bayesian)

Trial Context: A small biotech company is developing a gene therapy for Duchenne muscular
dystrophy (DMD). With only 200-300 eligible patients in the U.S., traditional Phase IT/III
paradigm is infeasible. Maximum enrollment: N = 30 patients.

Trial Design:

e Primary endpoint: Mean change in 6-minute walk distance (6MWD) at 12 months
e Success criterion: P(A6MWD > 30m | data) > 0.90
e Interim analysis: After n = 20 patients

e Prior: p9 =0, 10 = 40 (skeptical)
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Interim Analysis (n = 20):
e Observed: AGMWD = +35 meters, SD = 48 meters

Posterior Calculation:

L = L + & = 0.000625 + 0.008681 = 0.009306 (50)
T2 402 482 ‘ -
Tpost = 10.37 meters (51)
0/40% + 20 x 35/482
Upost = / 0.009306 / = 32.6 meters (52)
Posterior Probability:
30 — 32.6

Predictive Probability: Monte Carlo simulation (10,000 iterations): PPoS = 0.42 (42% prob-
ability of success if continued)

Decision Framework:

PPoS Interpretation Decision

< 0.10 Futility Stop, no-go

0.10-0.30 Low probability Likely no-go

0.30-0.70 Moderate probability Continue enrollment

> 0.70 High probability Continue with confidence

With PPoS = 0.42, decision: CONTINUE ENROLLMENT
Final Analysis (N = 30):

e Observed: AGMWD = +38 meters

e Final posterior: P(A6MWD > 30 | final data) = 0.78

e Did not meet pre-specified 0.90 Bayesian threshold

e Company decision: GO to Pivotal Trial

Decision rationale: Although the 0.90 posterior probability threshold was not met, the company
proceeded based on: (1) clinically meaningful point estimate (+38m exceeds MCID of 30m), (2)
78% posterior probability still indicates strong evidence of benefit, (3) FDA Type B meeting
feedback indicated willingness to consider accelerated approval pathway given unmet need in
DMD, and (4) natural history data showing progressive decline without treatment. This illus-
trates that Bayesian thresholds inform but do not dictate decisions—regulatory, clinical, and
commercial context also matter.

7.4 Case Study 4: Comparative Program Analysis

Development Program: Non-small cell lung cancer (NSCLC) immunotherapy combination

Traditional vs. Zetyra-Optimized Development:
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Metric Traditional Zetyra Savings

Phase 1T Sample Size 80 53 (avg: 48) 32 patients (40%)
Phase II Duration 12 months 8 months 4 months (33%)
Phase 1T Cost $4.0M $2.4M $1.6M (40%)
Phase ITT Sample Size 500 515 max (425 expected) 75 expected (15%)
Phase III Duration 54 months 42 months (expected) 12 months (22%)
Phase 11T Cost $100M $87.5M $12.5M (13%)
Total Duration 66 months 50 months 16 months (24%)
Total Cost $104M $89.9M $14.1M (14%)
Time to BLA Month 72 Month 56 16 months earlier

Table 22: Case Study 4: Traditional vs. Zetyra-optimized development program

Revenue Impact:

Assuming $2B peak annual sales with 10-year exclusivity:

e 16 months earlier launch
e Additional revenue: $2B x (16/12) = $2.67B

e NPV (discounted at 10%): $2.1B

Return on Investment (ROI):
Trial Cost Savings ROI (more defensible):

$14.1M savings — $0.15M implementation
ROlcost = g $0.15M P =93x (54)

Note: Revenue timing gains ($2.1B NPV) are highly assumption-dependent and shown sepa-
rately. See Section 7.5 for sensitivity analysis.

7.5 ROI Sensitivity Analysis

The ROI estimates above depend on multiple assumptions. This section provides sensitivity
analysis to help readers assess applicability to their specific context.

Trial Cost Savings Sensitivity (Case Study 4):

Scenario Assumptions Cost Savings ROI
Conservative  p = 0.35, 1 interim, 50% GSD benefit $7.0M 46 x
Base Case p = 0.50, 2 interims, 75% GSD benefit $14.1M 93
Optimistic p = 0.60, 3 interims, 100% GSD benefit $21.0M 139x%

Table 23: Trial cost savings sensitivity (excludes revenue timing)

Revenue Timing Sensitivity (illustrative only):
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Peak Sales Time Gained Discount Rate P(Success) Risk-Adj NPV

$500M 12 months 12% 60% $267M
$1B 16 months 10% 50% $667M
$2B (base) 16 months 10% 100% $2.1B
$2B 16 months 10% 50% $1.05B

Table 24: Revenue timing NPV sensitivity (highly assumption-dependent)

K e}f Ta‘kea\va}ﬂ.

Trial cost savings (reduced patient enrollment, shorter timelines) represent the most
defensible ROI component and alone justify Zetyra adoption at 46-139x ROI depending
on trial characteristics.

Revenue timing gains can be substantial but depend heavily on peak sales projections,
probability of technical /regulatory success, and competitive dynamics. These should be
evaluated within each sponsor’s specific commercial forecasting framework.

8 Conclusions

8.1 Summary of Capabilities

Zetyra provides a validated, integrated platform of three statistical calculators addressing com-
plementary inefficiencies in clinical trial design:

CUPED (Covariate-Adjusted Power Analysis):

e Leverages baseline-outcome correlations to reduce sample size by 15-35%
e Validated against analytical variance reduction formula (VRF = 1—p?) with exact matches

e Methodology aligned with FDA May 2023 guidance encouraging covariate adjustment
(note: FDA guidance supports the statistical practice of covariate adjustment; CUPED is
Zetyra’s implementation)

Group Sequential Design:

e Enables interim efficacy/futility monitoring with rigorous Type I error control

e Validated against gsDesign R package (gold standard) with maximum deviation 0.0046
z-score

e O’Brien-Fleming boundaries require only 2-3% sample size inflation while enabling 15-40%
expected sample size reduction

Bayesian Predictive Power:

e Computes probability of trial success given interim data and prior beliefs
e Validated against analytical conjugate prior formulas (exact matches)

e Enables quantitative go/no-go decisions vs. binary p-value thresholds
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8.2 Competitive Advantages

Capability Zetyra FEast PASS ADDPLAN nQuery

CUPED Calculator
Group Sequential Design
Bayesian Predictive Power
All Three Integrated
Public Validation Suite
Web-Based (no install)
Monthly Subscription

Annual Cost* $1,188 $15,000 $8,000 $12,000 $6,000

NN N N SRNEN
|
|
|
|

Table 25: Competitive comparison of clinical trial design software (as of January 2026)

*Pricing based on published list prices as of January 2026. Actual pricing may vary by negoti-
ation, academic discounts, or bundling. Competitor capabilities assessed from publicly available
product documentation; vendors may offer additional features not reflected here.

8.3 Case Study ROI Summary

Case Study Cost Savings Time Savings ROI
Oncology Phase II (CUPED) $3.6M (30%) 3.6 months 10,000 %
CV Phase IIT (GSD) $18.1M (24%) 12 months 120,000 x
Rare Disease (Bayesian) Avoided $10M futile 18 months N/A
Full Program (Integrated) $14.1M (14%) 16 months (24%) 93,000 x

Table 26: Summary of case study ROI

8.4 Conclusion

Zetyra provides a validated, integrated platform of three statistical calculators addressing com-
plementary inefficiencies in clinical trial design. By combining rigorous methodology, transparent
validation, and regulatory expertise, Zetyra enables biostatisticians to design more efficient trials
without sacrificing statistical rigor or regulatory acceptability.

The case studies demonstrate that even modest adoption—a single Phase II/III program—
can generate substantial cost and time savings. As regulatory agencies increasingly encourage
efficient designs (FDA’s 2023 CUPED guidance, 2026 Bayesian guidance published January
12, 2026), methodologies like covariate adjustment, group sequential monitoring, and Bayesian
predictive power will transition from competitive advantage to industry standard.

The future of clinical trial design is transparent, validated, accessible, and efficient.
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A API Documentation

Zetyra provides a RESTful API for programmatic access to all calculators.

Operational Details

e Authentication: API key required in request header (X-API-Key: <your-key>). Keys
issued upon subscription.

e Rate Limits: 100 requests/minute (Evidence Pro), 500 requests/minute (Evidence Col-
lective), custom limits for Enterprise.

e Versioning: API version in URL path (/api/v1/). Breaking changes require major
version increment with 6-month deprecation notice.

e Error Format: HTTP status codes with JSON error body: {"error": "message",
"code": "ERROR_CODE"}

e Data Handling: Input parameters logged for debugging (30-day retention). No PHI
fields accepted or stored. SOC 2 Type Il compliance in progress.

e Availability: 99.9% uptime SLA (Enterprise tier). Status page: status.zetyra.com

Base URL

https://zetyra-backend -394439308230.us-centrall.run.app/api/vi/

CUPED Calculator

POST /cuped
» Content -Type: application/json

l’ }

{

"standard_sample_size": 240,
"correlation": 0.55

9 Response:
"variance_reduction_factor": 0.6975,
"cuped_sample_size": 168,
"sample_size_reduction": 72,
"percent_reduction": 30.0

5 3

Group Sequential Design

POST /gsd

2> Content -Type: application/json
o {

|lk|l: 4’

"alpha": 0.025,

"beta": 0.10,
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8 "boundary_type": "obrien_fleming",

9 "effect_size": 0.5,

10 "test_type": "two_sample"

1}

12

13 Response:

14 {

15 "max_sample_size": 842,

16 "efficacy_boundaries": [3.897, 2.754, 2.250, 2.014],
17 "information_fractions": [0.25, 0.50, 0.75, 1.00],
18 "expected_sample_size_h1": 695,

19 "inflation_factor": 1.022

20 }

Bayesian Predictive Power (Binary)

POST /bayesian/binary
Content -Type: application/json

S N

{
"prior_alpha": 1,

6 "prior_beta": 1,
7 "observed_successes'": 8,
8 "observed_n": 20,
9 "future_n": 20,
10 "threshold": 0.30,
11 "success_criterion": 0.95
12 }
13
12 Response:
15 {
16 "posterior_alpha'": 9,
17 "posterior_beta": 13,
18 "posterior_mean": 0.409,
19 "posterior_prob_above_threshold": 0.814,
20 "predictive_probability": 0.367,
21 "recommendation": "continue"
22 }
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B Notation Summary

Symbol Definition

« Type I error rate (typically 0.025 or 0.05)

15} Type II error rate; Power =1 — 3

p Pearson correlation between baseline covariate and outcome
VRF Variance Reduction Factor = 1 — p?

Zy; Test statistic at interim analysis k

bk, Boundary value at interim analysis k

T Information fraction at analysis k

a(T) Alpha-spending function
PPoS Predictive Probability of Success
Ccp Conditional Power
HR Hazard Ratio
7(0) Prior distribution for parameter 6
m(f|data) Posterior distribution for parameter ¢
B(a,b)  Beta function = I'(a)['(b)/T'(a + b)

Table 27: Summary of mathematical notation

C Key Formulas

CUPED
Yocupep = Y — G(X — E[X]) (CUPED estimator)
Cov(X,Y
0" = ;)/\;E«();')) (Optimal coefficient)
VRF =1 — p? (Variance reduction)
NCUPED = Nstandard X (1 — p*) (Adjusted sample size)
Group Sequential Design
I
= -~ (Information time)
Ik
Aoy = a(1) — a(TK—1) (Incremental alpha)
Z
aor(t) =2 [1 -0 < aﬂ)] (O’Brien-Fleming)
Vit
1—e
ansp(t;y) = a X % (Hwang-Shih-DeCani)

N
IF — GSD
Nﬁxed

(Inflation factor)
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Bayesian

PPoS = /CP(G) X (0| Dinterim ) d0 (Predictive probability)

o)+
ap+ Bo+n
o/ +nX/o?

Elp|z,n] = (Beta-binomial posterior mean)

= Normal posterior mean
/Lpost 1/7_3 + TL/U2 ( 1Y )
1 1 n . ..
- =5+ (Posterior precision)
7-post 70 o

D Glossary of Statistical Terms

Alpha (o)
Type I error rate; probability of rejecting true null hypothesis (typically 0.05 or 0.025)

Alpha-Spending Function
Function a(t) determining how Type I error is allocated across interim analyses in group
sequential designs

ANCOVA
Analysis of Covariance; adjusting treatment comparison for baseline covariates

Bayesian Predictive Probability
Probability that trial will succeed at final analysis given interim data and prior beliefs

Boundary (Efficacy/Futility)
Threshold for stopping group sequential trial early for efficacy or futility

Conditional Power
Probability of trial success given interim data, conditioning on specific treatment effect
value

Conjugate Prior
Prior distribution that, when combined with likelihood, yields posterior in same family

CUPED
Controlled-experiment Using Pre-Experiment Data; variance reduction technique using
baseline measurements

DSMB/DMC
Data Safety Monitoring Board / Data Monitoring Committee; independent committee
reviewing unblinded interim data

Group Sequential Design
Trial design with pre-planned interim analyses and stopping rules

Hazard Ratio (HR)
Ratio of event rates in treatment vs. control (time-to-event endpoints)

Information Fraction
Proportion of maximum statistical information available at interim analysis
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O’Brien-Fleming
Conservative alpha-spending approach with high early boundaries

Pocock
Aggressive alpha-spending with constant boundaries across all looks

Posterior Distribution
Updated probability distribution for parameter after observing data (Bayesian)

Prior Distribution
Initial probability distribution for parameter before observing data (Bayesian)

Variance Reduction Factor (VRF)
Proportional decrease in outcome variance from covariate adjustment (VRF = 1 — p?)

Suggested Citation:

Qian L. Zetyra: A Validated Suite of Statistical Calculators for Efficient Clinical Trial Design.
Technical White Paper. Evidence in the Wild, January 2026. Available at: https://zetyra.
com/whitepaper

Contact:

Lu (Maggie) Qian, MS
maggie@zetyra.com
https://zetyra.com
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